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In this article we compute the Hausdorff dimension and box dimension (or 
capacity) of a dynamically constructed model similarity process in the plane 
with two distinct contraction coefficients. These examples are natural generaliza- 
tions to the plane of the simple Markov map constructions for Cantor sets on 
the line. Some related problems have been studied by different authors; 
however, those results are directed toward genetic results in quite general situa- 
tions. This paper concentrates on computing explicit formulas in as many 
specific cases as possible. The techniques of previous authors and ours are 
correspondingly very different. In our calculations, delicate number-theoretic 
properties of the contraction coefficients arise. Finally, we utilize the results for 
the model problem to compute the dimensions of some affine horseshoes in R", 
and we observe that the dimensions do not always coincide and their coin- 
cidence depends on delicate number-theoretic properties of the Lyapunov 
exponents. 

KEY WORDS: Hausdorff dimension; box dimension; self-affine; PV num- 
bers; random geometric series; horseshoes; infinitely convolved Bernoulli 
measure. 

1. I N T R O D U C T I O N  

T h e  n o t i o n s  o f  H a u s d o r f f  d i m e n s i o n  a n d  b o x  d i m e n s i o n  p l ay  a n  i m p o r t a n t  

ro le  in  d e s c r i b i n g  the  c o n c e p t  o f  "s ize"  of  sets in  the  p lane .  T h e y  are  

p a r t i c u l a r l y  useful  in  a n a l y z i n g  sets  o f  L e b e s g u e  m e a s u r e  zero.  

A s i t u a t i o n  t h a t  is re la t ive ly  well  u n d e r s t o o d  is t h a t  o f  C a n t o r  sets  in 

the  l ine t h a t  a re  c o n s t r u c t e d  d y n a m i c a l l y  f r o m  s imp le  M a r k o v  ( " c o o k i e  
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cutter") transformations. Let I0, I~ c [0, 1 ] be two disjoint closed subinter- 
vals. A simple Markov map is a C ~§ map g: I o w I ,  ~ g~ such that (i) 
[g'[ > 1 and (ii) g ( I o ) = g ( I i ) =  [0, 1]. Then A = { x c  [0, l ] :gk(x)  ~ [0, 1] 
for k = 0 ,  1,2,...} is the associated Cantor set. In this particular case, 
considerable advantage is gained from the one-dimensionality, and more 
specifically from the conformal nature of the transformation. The situation 
becomes more complicated when nonconformal and higher-dimensional 
analogs are considered. 

In this paper we first deal with the simplest "model problem" in which 
we are concerned with a Cantor set in the plane constructed from two 
similar affine contractions. Our set is described by a finite number of 
parameters (the horizontal contraction 22, the vertical contraction ;t~, the 
position of the images, etc.), and it becomes a very natural question to ask 
about the dependence of the Hausdorff dimension and box dimension on 
these parameters. 

For this important special problem, we compute the box dimension in 
all cases and the Hausdorff dimension in a large number of cases. Our 
pivotal observation is that if ~=max{ ; t , , 22}  <1/2,  then the Hausdorff 
dimension and box dimension are equal and depend only on ct. 

In subsequent sections, we present necessary conditions on ct> 1/2 
such that the Hausdorff dimension and box dimension will again be equal. 
This problem seems to be intimately connected with very deep results in 
number theory and harmonic analysis on PV numbers due to Garcia and 
Erdos. We introduce a new class of numbers (GE numbers) that are a 
subset of, but more suitable for our purposes than, the well-known class of 
numbers studied by Kahane and SalemJ ''~ Previous applications of these 
ideas to Hausdorff dimension estimates seem to have been limited to 
graphs of Weierstrass-like functionsJ ~2' ,6~ Along the way, we construct the 
first one-parameter family of Cantor sets whose Hausdorff dimension and 
box dimension do not coincide. 

We then describe how our ideas may be applied to various generaliza- 
tions of this problem. 

Finally, we utilize the results for the model problem to compute the 
dimensions of some linear horseshoes in II~". We construct an easy example 
to show that the Hausdorff dimension of some linear horseshoes depends 
on the geometry of the horseshoe, and hence that the Hausdorff dimension 
of a hyperbolic set cannot be computed from just dynamical quantities, i.e., 
entropies and Lyapunov exponents. Moreover, we construct examples of 
linear horseshoes all having the same geometry. In some of the examples the 
dimensions coincide, and in other examples the dimensions do not coin- 
cide. The largest Lyapunov exponent of the latter examples is a reciprical 
of a PV (badly approximable) number. This indicates that the Hausdorff 
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dimensions of hyperbofic sets can depend on deficate number-theoretic 
properties of the Lyapunov exponents. This is in contrast to the Hausdorff 
dimension of an invariant measure for a surface diffeomorphism, where the 
dimension can be computed solely in terms of the Lyapunov exponents and 
the measure-theoretic entropy. 12~ We conclude that the Hausdorff dimen- 
sion of an invariant measure supported on a hyperbolic set is a much more 
natural and tractible quantity to study than the Hausdorff dimension of a 
hyperbolic set. 

2. D E S C R I P T I O N  OF M O D E L  P R O B L E M  

Let Ro, RI c I  be two disjoint boxes in the unit square I c  [R 2 (aligned 
with the axes of I)  each having the same height, 0 <21 < l, and the same 
width, 0 < 22 < 1. See Fig. 1. For convenience assume 0 < 21 ~ 22 < 1. If this 
is not the case, we need only interchange the two coordinates of the 
original square. 

Consider the two affine maps Ao: I ~  Ro and A~: I-- ,  R 1 that contract 
the unit square by 2~ in the vertical direction and 22 in the horizontal 
direction and place the resulting images in Ro and R1, respectively. Denote 
by F the self-affine limit set induced by Ao and A 1, i.e., the unique compact 
set invariant under A o and A~ .~5~ The step-n approximation of this limit set 
consists of the 2" rectangles obtained by applying all n-fold compositions 
of Ao and A~ t o / ( s e e  Fig. 1). 

N o t a t i o n .  Let dimB F and dimH F denote the box dimension and 
Hausdorff dimension, respectively, of the set F. Let l rkFc  [0, 1 ] denote the 
projection of the limit set F onto the 2 k axis, for k = l, 2. Full definitions 
and properties are given in Appendix A. 

J 

El 
'1 

Fig. 1. 
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We first present a table of calculated values of the dimensions of F that 
follow from the results in this paper. In cases 2-5 we assume that `11 < `12. 

Expli �9  F o r m u l a s .  With the hypotheses above, we have the 
following situations: 

Case O: 

log 2 
1̀ = 1̀1 = `12 ~ dim~ F =  dimB F -  - -  

log(1/2) 

Case 1.. 

log 2 
/ r 2 R  o = ~2RI :=~ dimn F =  dima F -  - -  

log( 1/2 ~ ) 

(R 0 is directly on top of Rl - -degenera te  case.) 

Case 2: 

1 log 2 
`12 < ~ =~ d i m .  F = dimB F =  

1/`12~ ) log( z 

Case 3: 

`12 = 2-l/p, p ~ N ~ dim H F =  dim a F-1~ 
log( 1/2 t ) 

Case 4: There exists 0 < ), < 1 such that for almost all `12 with 

y < 22 < 1 ~ d i m n  F =  d i m  a F =  1~ 
log( 1/`1 i) 

Case 5." 

log( 222/`11 ) 
`12 > ~ 1 ~  dima F log(l/`11 ) 

We prove the equality of the Hausdorff  dimension and box dimension 
in the above cases by finding a number-theoretic sufficient condition on `12 
that ensures the dimensions coincide. It is here that we encounter  a 
fundamental dichotomy between the cases 0 < `12 < �89 and �89 < ,l 2 < 1. The 
condition is always satisfied for 0<`12 < 1. The case when �89 <1  is 
much more subtle. The sufficient condition is violated when `12 is the 
reciprocal of a Pisot-Vijayarghavan (PV) number. Recall that PV numbers 
are algebraic integers whose conjugates all lie within the unit circle. 1~9"a'4) 
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It is not clear, a priori, whether the number-theoretic property of 22 
that we require to show coincidence of the dimensions is really necessary 
or just a manifestation of our proof. In ref. 16 the authors show that for 
these problematic PV numbers, the equality between the two types of 
dimension actually breaks down: 

P r o p o s i t i o n .  116) For 21 =�89 and 2 2 equal to the reciprocal o f a  PV 
number, there exists certain configurations such that dimn F<d imB F. 

In ref. 16 the authors compute the dimension of graphs of Weierstrass- 
like functions. It just so happens that in this very special case the sets F 
reduce to graphs of Weierstrass-like functions (modulo countable sets) and 
hence the results in ref. 16 are applicable to our case. One can combine the 
result in ref. 16 with Proposition 2 to construct the first one-parameter 
family of Cantor sets whose Hausdorff dimension and box dimension do 
not coincide. 

1 We conjecture that for (Lebesgue) almost all ~ < 12 < 1, the Hausdorff 
dimension coincides with the box dimension and is given (for non- 
degenerate configurations) by the formula in case 4 in the list of explicit 
formulas. This conjecture would imply that for almost all 0 < 22 < 1, the 
Hausdorff dimension of the limit set of the model similarity process coin- 
cides with the box dimension. Morover, we conjecture that for a generic 
similarity process (i.e., the boxes need not be aligned with the axes of I), 
the Hausdorff dimension coincides with the box dimension. 

We wish to quickly dispose of the degenerate configurations where 
n2R0=zt2Rl,  i.e., R0 is directly on top of R 1. In these cases, the limit sets 
are easily seen to be uniform Cantor subsets of a vertical line having expo- 
nent 2~, and hence dimH F =  dimB F =  log 2/log(1/21). We will henceforth 
assume that all configurations are nondegenerate. 

3. CALCULATION OF dims F 

In this section, we shall present a direct computation of the box 
dimension of F in all cases. We remark that Falconer c8) has related results. 
We begin with some notation. 

Notation. Denote the rectangles under n iterations of the affine 
maps by Rct,.....jn)=Ain...Ai, I c l ,  (il ..... i,,)~ {0, 1}" 

Let n k F c  [0, 1 ] denote the projection of the limit set F onto the 2k 
axis, for k = 1, 2." We begin with a simple characterization of this projection 
that will prove useful later. 

Proposition 1. We have the following explicit representation for 
the projection of the limit set F onto the 22 axis: 

822/77/3-4-22 
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} rczF= [el+ik+,(e2--e,)]2k2;(i,,i2,...)e{O,l} ~ 
"-k = 0 

= el "+-(e2--e')k= o2 ik+,2~;(i',i2,'")e{O, 1} r~ 
d 

c 1 - 2  2 1 - J  

Proof. The affine maps A o, A~ on the square project to affine maps 
on the 22 axis Bo, B]: [0, 1] -*  [0, 1] of the form 

Bo(X ) = e I + •2 X and Bl(x) = e2 + 22x 

where 0 < e ~ , e 2 < l  are the left endpoints of the intervals rt2R o, / t 2 R ] ,  

respectively. By induction, the left endpoint of n2R(it,..,i,i is given by 
Bi.... Bil 0 = z-,k=oX""- ] [el + ix- + l(e2 -- el )] 2 k. The lemma follows by taking 
limits. �9 

The following consequence will be useful in our estimates. 

C o r o l l a r y  1.1. 1. I f �89 then rrzF=J. 

2. If 0 <,,~2 < 1, then / t2F= Cantor set. 

R e m a r k s .  1. I f  - /1"2-- 2,  then Corollary 1.1 corresponds to 
computing the dyadic expansion of numbers in J. 

2. When 22= ~, then Corollary 1.1 corresponds to the construction 
of a copy of the middle third Cantor set. 

Proof of Corollary 1.1. If �89 ~< 22 < 1, then the expression in Proposi- 
tion 1 is the fl expansion for fl = 1/22. It is easy to see that every x ~ J has 
a fl expansion, hence ~2 F= J. If we take the orbit of x under the associated 
expanding map (making arbitrary choices of the expanding map when the 
domains overlap), then the itinerary of the orbit gives the corresponding fl 
expansion. 

For the case 22 < �89 we need only observe that the set is affinely 
equivalent to the standard Cantor set 

ik 2 k" (i],i2,...)e{O, 1} ~ +l 2, (3.1) 
k=O 

after scaling (by d > 0 )  and translating [by e~/(l - 2 2 ) ] .  �9 
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N o t a t i o n .  Let F. denote the union of the disjoint rectangles 
R,,.....,,~ for (il ..... i,,)E {0, 1}'. 

P r o p o s i t i o n  2. If 1-..<2.2< 1, then dimB F=log(22.2/2.1)/log(1/2j). 

Proof. Consider the obvious cover of the 2" rectangles in F,, by 
squares with sides of length 2'1'. Each of these rectangles R~i,.....~.~ has 
width 2.2 and height 2.'l and is covered by squares with side 21 aligned 
in a row. The minimum number of squares needed for each such rectangle 
is [2.~/2.'i]. We see from Corollary 1.1 that for all rectangles R ,  ...... ~,~, 
the projection n2(Fc~R,,.....~.~) contains an interval of length [J[ length 
(n2(Rt~,.....~,~)) = [J [  2.~ =d2.g/(1-2.2). Hence, of those squares in the cover 
of each R.,.....~,,~, the proportion of the squares in the cover of R.,.....~.) 
required to cover R.,.....~.~c~ F is at least the ratio of the length of the 
contained interval of the rectangle, i.e., 

d22/(1 - 2 2) d 
(3.2) 

22 - 1 - 22 

Let N(6) denote the minimum number of 6-squares needed to cover F. Our 
above reasoning tells us that when 6 = 2.;, there are 2" rectangles in F,,, 
each of which is covered by 2.2/2.'~ squares of size 2.~. To cover F, the 
proportion given by (3.2) is needed, i.e., 

N(2.';) = 2" 22 1 
2.'; 1 - 2.2 

The proposition follows from Lemma A1 in Appendix A. �9 

P r o p o s i t i o n  3 .  If  0 < 2. 2 < �89 then dimB F =  log 2flog(I/2.2). 

Proof. The set naF was seen to be a Cantor set in Corollary 1.1. 
However, it is possible that the projections onto the 2.2 axis of the 2" 
rectangles in F,, may not be disjoint (this anomaly occurs because the 
Cantor set F is really defined through the affine maps Ao, A~ and not 
the covers F,,). However, our formula in Proposition 1 for n2F gives a 
construction that uses 2" disjoint intervals of length d2.'~/( I -2.2) at step n. 
Assume that the original boxes are given by R0 = [el ,  el +2.23 x Jj and 
R l = [ e  2, e 2 4- 2.2"] X J 2 ,  where J l ,  J2 are intervals in the vertical axis. Once 
we have defined the maps Ao: I -~Ro and A,: I ~ R ~ ,  we replace these 
boxes by the new boxes 

R ~ =  1 - 2 . 2 ' 1 - 2 . 2  1 - 2 2 J  x J '  and R* L 1-2.2 '1--2.s x J2 
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These project (on the horizontal axis) onto the two disjoint intervals 

[ el- , - - / 3 1  "at- d22 ] and Je t -d22  • 2 ]  
1 - 2 2  1 - 22 1 - -  2 2 J  - -  2 2 ' 1 ~"22 

whose endpoints correspond to the sequences 

(il, i2,...) = (0, O, O, 0,...) 

= (0 ,  1, 1, 1,...) 

= (1, o, o, o,...) 

=(1,  1, 1, 1,...) 

These intervals give the "standard" construction of the Cantor set in 
the projection zt2F, as can be seen by Proposition 1. 

* ...AjaR*. The 2" We can define new rectangles Ru~....,inl=Ai, . 
rectangles at step n are all disjoint since R~' c Rt for l =  1, 2, and thus 
R* We let F* denote the union of these 2" rectangles. (il ..--, in) C R( i  I ,..., in). 
Clearly the limit set F is contained in the union of these rectangles for all 
n. The projection onto the horizontal axis consists of 2" intervals of length 
c2~, where c = d/2'~. 

Let 

[log[_(1/c) 2'~] 1 
m = L l o g  2 2 J 

Our goal is to find "optimal covers" of Fc~ F* by squares of length 2~'. It 
m n follows from the definition of m that 1 ~<c22/2 t -.~ 1 / 2 2 ,  and hence each 

rectangle R* projects onto a disjoint interval (on the horizontal axis) (il ,.... in) 
of length c2~'. It thus contains at least one interval of length 2~' and can be 
covered by 1/22 intervals of length 2'~. This implies that 

2" ~< # {27 intervals needed to cover n2(Fn F"*)} ~<2~ 2" 

i.e., N(2'~) ~ 2". Hence 

log N(2~') ~ log(2") 

log(1/27) log( 1/27) 

log( 1/2'1')] 
~ j l o g 2 . ~ ,  log2 

) 
n log( 1/2 ~ ) log( 1/2 2) 

The proposition follows from Lemma A1. �9 
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The following result follows immediately from the calculation of 
dimB F: 

Propos i t ion  4. If one avoids the degenerate configurations in case 
l, then for fixed 11, Ro, and Rl,  the map ~-2 ~ dimB F(J. 2) is Lipschitz but 
not differentable. 

Remark. This type of phenomenon, where a fundamental invariant 
changes in a Lipschitz but not smooth way, is quite rare in hyperbolic 
dynamical systems. 

4. C A L C U L A T I O N  OF d im  H F 

In this section we turn to the problem of computing the Hausdorff 
dimension of the set F. Our formulas are based on some number-theoretic 
properties of the value/12 and should be compared with those estimates in 
ref. 7. 

Let fl be any real number between 0 and 1. For any n >/1 consider the 
set 

L = { 0 , 1 }  o 

consisting of 2" elements. 
Define the map p,,: Jn ~ [0, 1/(1 - f l ) ]  by 

n - -  I 

p,,((io ..... i , ,_ , ) )=  ~ i r f f  
r = 0  

Definit ion.  The number fl satisfies condition GE (after Garcia- 
Erdos) if there exists a constant C > 0  such that for all x r  [0, +oo)  we 
have 

Ap(n)  = Card{ (io ..... i,,_ 1 ): p,,(io ..... i , _  1 ) E [x ,  x + fl")} ~< C(2fl) n 

Remark. We can also use the slightly weaker assumption that for 
all fl' > fl, choose a constant C = C(ff) with the above properties. 

Lemma 1. If 0 < f l < � 8 9  then Ap(n )= l .  Hence condition GE is 
violated for all 0 < fl < �89 

Proof .  Observe that in this case the maps p ,  are bijective onto their 
images. Furthermore, the points in the image are separated by a distance 
of at least fl". The result follows easily. �9 

Remarks. 1. There exist values � 8 9  such that condition GE 
does not hold. Consider the case where 1/p is the golden mean, i.e., 
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1 + 1/fl= l i f t  2. If we consider the 2" strings (w~ . . . . .  W . ) E J 3 n  , where each 
wi= (1, 0, 0) or (0, 1, 1), then it is clear that they have the same images 
under P3, and thus Ap(3n)>~2". However, it is an easy numerical check 
that 2 > (2fl) 3 = 1.88854 .... which clearly contradicts the GE assumption. 

2. In Appendix B we show that if fl is the reciprical of a root of 2, 
then fl satisfies condition GE. We also show that the set of GE numbers 
in the intervals [ �89 1 ] has positive Lebesgue measure. 

P r o p o s i t i o n  5. 1. If 0 < 2 2 < 1 ,  then dimB F =  dimH F =  log 2/ 
log(1/22). 

2. If �89 < 22 < 1 satisfies condition GE, then 

log(222/21 ) 
dimB F =  dim n F 

log(1/2,) 

Proof. Let Ba be a ball of radius 6. Choose k ~  such that 
di < 2 k < 106 (e.g., k = [log 2//log 6] + 1), and choose m = [k log(I/22) / 
log(l/2~)]. Clearly 2 ] " ~ 2  k. Using an idea in ref. 14, we consider the 
"asymptotic squares" S of dimensions 2~' x).~ that prolongate each 
rectangle in Fk. There are two asymptotic squares associated to each 
rectangle in Fk, corresponding to "prolongating to the left" and 
"prolongating to the right." 

It is convenient to break up the rest of the proof into four shorter 
lemmas. 

L e m m a  2. There exists a bound C>~I [independent of 6 and 
k = k ( 6 ) ]  such that F ~ B ~  can be covered with at most C asymptotic 
squares (Fig. 2). 

Proof. This is a simple piece of geometry in the plane. �9 

. . . . . . . . . . . . . . .  

! 

- -  . . . . . . .  I "  . . . . . . .  [ 

! | ! 

! ! 

! I 
I 

Fig. 2. F~B6. 
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We now apply the mass distribution principle (see Appendix A). It 
follows from Lemma 2 that for any probability measure/~ supported on the 
limit set F, 

/~(Ba) ~< ~, /~(S) (4.1) 
bdd # o r S  

where the sum is over at most C asymptotic squares, and 

/~(S) ~< ~, /x(R) (4.2) 
R ~ F k ~ R ~ S v ~  

where the sum is over those rectangles R in Fk that intersect the asymptotic 
square S. 

Let/1 = (1/2, 1/2) ~ be the equidistributed Bernoulli measure, i.e., each 
rectangle R e F~ has mass ~ ( R ) =  (1/2) k. Using (4.2), we have a bound on 
the/~-measure of S of the form 

Iz(S)<~N(k)(�89 k, where N ( k ) = m a x  # { R n S }  

Hence, using (4.1), we get a bound on the l~-measure of asymptotic squares 

/l(B,~) ~< C max/a(S) ~< CN(k)(�89 ~ 

Lemma 3. If N(k) is uniformly bounded in k, then dimnF>~ 
log 2/log(1/).2). 

Proof. Notice that (1/2) k--).2ks, where s = log  2/1og(1/).2). Hence 

p(Ba) <. CN(k)(�89 k <. CM).~ <~ CM. 10sfi -' 

The lemma follows immediately from the mass distribution principle. �9 

Remark.  We actually proved a stronger result: the lower pointwise 
dimension ~211 dimS(x) i> log 2/log(1/).2) for all x e F. 

L e m m a  4. If N(k) <. K(2).2) ~-% then 

dimH F >/log(2)-2/). i ) 
log( 1/21 ) 

Proof. We estimate 

/~(Ba) ~< CN(k)( �89 C(2).2)k--, (�89 CK2~(222)-" 

= CK2k2(2)-2) -k log A2/log 21 = CKXk2).2 k log(Z22) / log  21 
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If s = 1og(222/21 )/log( 1/21 ), then 

lO'J"/> '~2ks __-- -2"~2'~k] - k  logt222)/log 2, 

The lemma now follows immediately from the mass distributuion principle 
in Appendix A. �9 

R e m a r k .  As in Lemma 3, we actually proved a stronger result: the 
lower pointwise dimension dim.J(x)/> log(222/21 )/log( 1/2 ] ) for all x ~ F. 

Consider a rectangle R = Rig ,....,ik) ~ Fk and the corresponding 
asymptotic square S that prolongates R. 

To complete the proof of Proposition 5, we now obtain the bounds for 
N(k) in Lemmas 3 and 4. 

L e m m a  5. The other rectangles R'e  Fk such that R ' n  S #  ~ have 
the codings of the form 

(il ..... i,,,jm+ ],...,jk) 
fixed 

Proof. For the rectangles R and R' to intersect in a common 
asymptotic square S, their separation can be at most 2]". �9 

We want to estimate the number of rectangles in the intersection. The 
I 1 left endpoint of R,,....,ik)is ~ = o ( e ~ + d 2 2 ) 2 2 ,  and the left endpoint of 

R' = R,,,..... t,.j,+ ,.....j~) is ET'--0 (e, + di,) 2tz + ~.~=,, +, (e, + ajt) 2 t. Hence for 
R and R' to lie in the same asymptotic square S, we require that 

,_2+ I 1 

Lemma 6. Given any sequence p~l--l~ {0, 1}, let 

N ' ( k ) = { ( i ]  ..... ik)~{O, 1}k:d ~ (pl--it) 2t <2~} 
I = M + I  

1. If 0 < 22 < �89 then there exist M, N > 0, such that NP(k) <<. M for 
all sequences p and A22(k) <~ M. 

2. If � 89  then 2l is a GE number if and only if for all 
sequences p, there exists K >  0 such that NP(k)<~ K(22z) k - " .  

Proof. The proof of part 1 follows from the estimate on Aa(n) in 
Lemma 1, with the choice 22=l/f t .  In particular, we can let 
XM, k = ~ = M + , p t / f f .  Then by Lemma 1 there are no other expansions 
within distance lift". To complete the proof, we need only repeat this 
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observation where we replace the choice of XM, k with translates by 22 k. This 
requires at most [ l / d ]  + 1 such translates, from which we deduce that 
Ne(k)<~ ([ l / d +  1]) Ap(k) .  

The proof of part 2 is very similar. �9 

Remarks.  1. We can give an easy alternative proof of Proposi- 
tion5, part 1. It follows from well-known properties of Hausdorff 
dimension tS) that dimH(rCz(F)) ~<dimH(F) ~<dima(F). Since 0 ~< 22 ~< �89 
Corollary 1.1 and Proposition 3 imply that n2(F) is a uniform Cantor set 
constructed using 2 k disjoint intervals of length d2k2+l/(1--22) at step k. 
One easily computes the Hausdorff dimension of rc:(F)= log 2/10g(1/22). 
The formula now easily follows from Proposition 3. 

2. A heuristic explanation of why number-theoretic properties of 22 
determine whether dimH F =  dimB F is the following: If 22 is a GE number, 
then the rectangles R �9 Fk are horizontally well dispersed, and at most a 
fixed percentage can intersect an asymptotic square. However, if 22 is a PV 
number, then the rectangles R �9 F k tend to "bunch up" at various places, 
and a priori,  mos t  of the rectangles may intersect an asymptotic square. 

5. C O N D I T I O N  GE A N D  R A N D O M  G E O M E T R I C  SERIES 

There is an intimate connection between the property GE and a 
famous classical problem about random geometric series or infinitely 

X o~ denote a family of convolved Bemoulli measures (ICBMs). Let { ,} ,=  
independent and identically distributed Bernoulli random variables such 
that P ( e ,  = O) = P(e~ = I ) = �89 for k = 1, 2 ..... For fl a real number between 
0 and 1, consider the random variable 

S= ~ e.fl" 
n ~ ]  

It can be shown that the compactly supported distribution Its of S is of 
pure type, i.e., either totally singular or absolutely continuous with respect 
to Lebesgue measure 2 on [0, ,8/(1 - f l ) ] .  An important open problem is to 
characterize all values of fl (Erdos numbers) such that Ps is absolutely 
continuous. We refer the reader to ref. 1 for the fascinating history of this 
still largely unsolved problem along with an interesting application to 
dynamical systems. 

If fl satisfies condition GE, then for x �9 R, 

~71x, ~+P"] : ~ m <  c/~"= C~l-x, x +/~"1 
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Hence, Ps = lim . . . . .  p7 is absolutely continuous with respect to Lebesgue 
measure, with a uniformly bounded Radon-Nikodyn derivative. 

Conversely, if the distribution p~ is absolutely continuous with 
uniformly bounded density, then fl satisfies GE (cf. Appendix C). 

Among those explicitly known values such that the distribution S 
gives an absolutely continuous measure are reciprocals of roots of 2 (see 
Appendix B) and some more algebraic numbers by Garsia/9) Furthermore, 
GE holds for almost all fl sufficiently close to 1 (cf. Proposition C1 in 
Appendix C). 

A related condition has appeared in the work of several authors who 
attempt to compute the dimension of graphs of Weierstrass-like func- 
tions. (2'3~ Actually, the example in Section 2, where the Hausdorff dimen- 
sion and box dimension differed, is an example where our sets are graphs 
of such functions. The authors show that if the projection of a certain 
natural measure on the graph is absolutely continuous, then the box 
dimension of the graph coincides with the Hausdorff dimension. 

6. GENERALIZATIONS 

Up to this point we have chosen to concentrate on our "model 
problem." However, it is apparent that the method is somewhat more 
general. To illustrate this, we shall mention a few of the possible generaliza- 
tions with indications of their proofs. 

P r o p o s i t i o n  6. Replace the two similar boxes by two (or more 
boxes) with longest sides 22, l, 22.2 ~< �89 If one avoids degenerate configura- 
tions where the projection of the smaller rectangle onto the 22 direction is 
symmetrically contained in the projection of the larger rectangle, then the 
Hausdorff dimension of the limit set F coincides with the box dimension of 
F and is equal to the unique value 8 such that Zi  it62.i= 1. 

The proofs are exactly the same, except that the measure used in the 
mass distribution principle is now the Bernoulli measure (exp(--22, i~)/S, 
exp( - 22.2 t~)/S), where S = exp( - 22, t ~) + exp( - 22, 2 ~)" 

A further generalization of this is the following proposition: 

Proposition 7. Assume that Bo, B] are two rectangles and assume 
that the sides are each less than �89 in length. Assume that we have contrac- 
tions (with these images) of the form Ai(x, y)= (fi(x), it, y), i =  1, 2 where 
./i ,f2 are the inverse branches associated to a simple Markov map f on 
7r]F, where [fl'[, If~[ ~< �89 Then dimB F=d imH F and they equal the value 

characterized by P( - ~  log If 'I) = 0, where P denotes.the thermodynamic 
pressure.t2~ 
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Remark. In the constructions we have considered, each 
(i~ ..... i , , )~{0, 1}" corresponds to a unique rectangle R~,.....i,, and all 2" 
rectangles at step n are used in the construction of the limit set. One can 
generalize this construct ion by restricting the set of allowable rectangles at 
step n. For  instance, one case choose a stochastic transition matrix A and 
allow only A-allowable rectangles at step n, i.e., Ri,...,i,, where Ai,.0§ = 1 
for l = 1 ..... n - 1. It is easy to check that  in this case the formula for dimB F 
and dimH F in Sections 3 and 4 are simply modified so that  the log 2 
occurring in the numera to r  is replaced by log A, where A is the maximal  
eigenvalue for A. 

G e n e r a l i z a t i o n s  to  �9 D i m e n s i o n s  

In this section, we compute  the box dimension of the limit set in the 
case of two r-dimensional boxes in the r-dimensional cube. Let 
21/> 22 >/ . . .  ~> 2r denote the r contract ion coefficients. We first discuss the 
three-dimensional case: 

Case I. Assume that  21/> 22 ~> �89 and that 23 ~< 22 has no constraints. 
Let e = 2~. We want  to cover the limit set by cubes with sides e. 

If we go down to the n th level F, of rectangles, we first observe that 
the assumption on 21, 22 implies that  the projections of  F onto the corre- 
sponding axes actually contain intervals. Thus,  we can estimate the number  
of cubes required to cover each of the rectangles by 

N = 2 ; 2 ~  
2 ; 2  ~ 3 

Thus, the box dimension is 

d ims  F =  log(2t 22/2~) 
log 23 

1 Case I/. Assume 21 ~> ~>22 .  The difference now is that  while the 
projection into the first axis still contains an interval, the projection into 
the second axis is a Cantor  set. If  we let e = 2~, then again the number  of 
boxes of this size needed to cover the set F is estimated by 

2';2M 

where M = M ( n )  is the value such that  2~+M=2~ .  The appearance of M 
is because the projection of each rectangle in F ,  into the second axis 
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corresponds to an interval of size 2~, and the projection of the Cantor 
set can be efficiently covered by 2 M intervals of size 2~, where 
M = n log(23/22)/log 22 = nM' satisfies the above condition. 

The box dimension is then given by 

log 2 + log(21/23) + log 2 
dim s F =  log 2]. 3 log 23 log 23 

/> 22 . Following the previous reasoning, we Case II/. Assume ~ t> 2 
can expect to efficiently cover the limit set F by N =  2"2M2 e cubes with 
sides 2~, where M is as in case II, and Q is a similar value, except we 
r ep l ace  2 2 by 21 , i.e., Q = n log(A3/22)/log 2 2 = Q'n. The formula for the box 
dimension then becomes 

dimB F =  log 2 M' log 2 , log 2 
log 23 + ~ + Q log 23 

Genera/ Case. Let us assume that we now have two boxes in an 
r-dimensional cube, with contraction coefficients 2,/> 22 ~ ... ~ 2 s >/�89 

Define m; = log(2,/2~)/log 2~. Then the box dimension of the limit set 
F is equal to 

_ log(2t/2r) . log(2ff2,) log 2 
d i m a / ~ -  ~ + ' " +  1-~g~~ +l~g2r (ms+' ' ' 'mr+l)  

The Hausdorff dimension can be computed similarly provided the projec- 
tions onto the slower axes are disjoint or satisfy special assumptions related 
to those before. 

7. THE H A U S D O R F F  D I M E N S I O N  OF L INEAR H O R S E S H O E S  

The Cantor sets that arise in the model problem are closely related to 
an important class of diffeomorphisms. Specifically, it is easy to construct 
a Smale horseshoe diffeomorphism (with a two-dimensional stable 
manifold and a one-dimensional unstable manifold) for which the 
associated basic set A is a product of the limit set F constructed in the 
model problem and a uniform Cantor set Ep in the line. As usual, Smale 
horseshoes are constructed by specifying a box R and its image under the 
diffeomorphism. To arrange that the basic set is of the form described 
above, we require that the diffeomorphism f should be affine on R c~f- tR.  
This is illustrated in Fig. 3. 
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1 ~ 1 2 . ~ W  ~ um un*~ble 

itm st.thle 

/ 
/ 

f ( B )  

Horseshoe 
:tangle (f] B n f(B) is linear) 

CROSS - SECTION ( W" ): 

Creator se t  F 

fl ,  ft = pro jec t ion  (onto W" ) 
of inverse  b r a n c h e s  of  f. 

UNSTABLE DI[]RECTION ( W " ): 

0 P 1-p 1 

Fig. 3. Linear horsehoe. 

Since A = F x  Ep, where Ep is a uniform Cantor set, it follows (l~ that 
dimHA = d im HF +  dimH Ep and dimB A = d imBF+ dim~Ep. 

We wish to construct a horseshoe based on the Przytycki-Urbanski 
(PU) example mentioned in Section 2, where the dimensions of the limit set 
do not coincide. The PU example consists of two rectangles of width the 
reciprocal of the golden mean (which is easily seen to be a PV number) 
and height �89 that are flush against the top left and bottom right comers 
of the unit square, respectively. Unfortunately, the rectangles in the PU 
example are not disjoint, and hence one cannot effect the horseshoe 
construction. 

We wish to slightly perturb the PU example by shrinking the heights 
of the rectangles to ;tt < 1/2, keeping the widths the recipricol of the golden 



858 Pollicott and Weiss 

mean, and keeping the new rectangles flush against the top left and bottom 
right corners of the unit square (respectively). See Fig. 4. 

We wish to show that the dimensions of the limit set do not coincide 
for these perturbed examples. It immediately follows from our explicit 
formula for the box dimension (Proposition 2) that the box dimension of 
the limit sets of our modified PU examples changes smoothly as a function 
of 2,. It is not the case that there is strict containment of the two limit sets. 

The covering argument in reE 16 showing that the Hausdorff dimen- 
sion of the PU examples is strictly less than the box dimension applies 
without change to show that the Hausdorff dimension of the modified 
PU examples is strictly less than the box dimension. The argument is 
independent of 2~. It follows that there exists an open interval around 
2, = �89 such that for 21 in this interval, the dimensions of the limit sets for 
the modified PU examples do not coincide. This furnishes a one-parameter 
family of horsehoes whose dimensions do not coincide. 

Using obvious modifications of these constructions, we can arrange 
similar realizations, as basic sets, of limit sets generated by any number of 
affine maps, provided that the image rectangles are disjoint. We consider 
below two different types of cases where the dimensions can be explicitly 
computed, with interesting conclusions. 

Example 1. Horseshoes with different dimensions. Choose a finite 
number nl, say, of disjoint subintervals of the same length 2~ in the interval 
[0, 1]. Next choose a finite number n 2 of disjoint subintervals in [0, 1] 
with length 2~ strictly smaller than 22. Consider the rectangles in the unit 
square corresponding to the products of these two sets of intervals. 

Choose from this family a subfamily of k rectangles. In particular, this 
yields a finite number of disjoint rectangles such that (1) each rectangle has 
height 2~ and width 22, (2) disjoint rectangles either have the same projec- 
tion or disjoint projections onto the horizontal direction, and (3) disjoint 
rectangles either have the same projection or disjoint projections onto the 

Im 2 

~ '1-  1 
OM 

k = _..!_ 1 
�9 OM 

Fig. 4. 

~ '1-  1 
OM 

~ = _ ! _  1 
�9 GM 

Left: P U  e x a m p l e ;  r ight :  mod i f i ed  P U  E x a m p l e .  

k l < !  
2 
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Fig. 5. Sierpinski carpet. 

vertical direction. See Fig. 5. A Sierpinski-like limit set F is generated by 
the k affine contractions associated with this subfamily of rectangles. This 
construction is modeled by a full shift on k symbols. 

This is a slight generalization of the familiar Bedford-McMullen 
problem,t2. 14) inasmuch as the vertices of the rectangles need not have 
rational coordinates. The Hausdorff and box dimensions of the limit set F 
of these (and more complicated) systems have been studied by Lalley and 
Gatzouras I]3) and Kenyon and Peres/'~ The Hausdorff and box dimen- 
sions of these systems are known to be 

1 
dimH F -  

log 22 

n 2  

where n~ is the number of rectangles from the subfamily left in the ith row, 
and 

1 ( l ogn  I d i m s F =  - - -  + log(k/n])~ 
n 2 \log/T 2 log 21 ] 

We want to make our choices of ;t~, 2 2 > 0  and configuration of 
rectangles such that dimuF~dimsF. Consider the rectangles Ro = 
[0, 1/2] x [0, 0~], R] = [0, 1/2] x [1--0t, 1], and R2=  [1/2, 1] x [(1 -00/2 ,  
( 1 + 0t)/2], where 0 < ct < 1/3. Clearly, for typical values of ~ we will have 
that dimH F~: dims F. 

If we consider an associated horseshoe A associated with the family of 
affine maps generating F, then we see that 

dimH A = dimH F +  dimH Ep ~ dims F +  dims Ep = dims A 

i.e., the associated horseshoe limit set A has Hausdorff dimension different 
from the box dimension. 
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Example  2. Dependence of  dimension on configuration. Choose n~ 
disjoint subintervals of  the same length 21 in the interval [0, 1]. Next  
choose n2 disjoint subintervals in [0, 1 ] with length 2, strictly smaller than 
22. Consider the rectangles in the unit square corresponding to the 
products  of these two sets of intervals. We associate to these rectangles 
linear contractions and denote the corresponding limit set by A1. It is easy 
to see that  the Hausdorf f  dimension and box dimension of the projection of 
A I onto  the horizontal  axis coincide and equal log n2/log(1/).2). Similarly, 
we see that  the Hausdorf f  dimension and box dimension of the projection 
of AI onto the vertical axis coincide and equal log nl/log(1/)-l).  It is then 
easy to see that  since the space A I is a product  of  these projections, then 

log n] log n 2 
dim H A~ = d ims  A I = l o g - - ~  1) + ~ 7 ~ - 2 )  

Assume that the product N = n l . n  2 has a different factorization 
N = m  t . m  2. We can repeat the above construction of an array of boxes 
using m] disjoint subintervals of the same length 21 in the interval [0, 1 ] 
and m 2 disjoint subintervals in [0, 1 ] of equal length 22. We shall denote 
by A2 the corresponding limit set, and by a similar reasoning we see that 

log m l log m 2 
dimH A2 = d ims  A2 = log(1/)- 1) + ~1) -2 -2 )  

If  we take the specific choices nl = 6 ,  n 2 = 2  and m] = 4 ,  m2=3,  then for 
typical values of  ;t~ and )-2 we have (see Fig. 6) 

dim 8 A 1 = d ims  A i =P dim a A2 = d ims  A 2 

~ D ~ D D D  

~ O D ~ D D  

r---i r " l  i s ]  r"-i 

I ' !  I = 1 1 Z I  r " l  

r-m r--1 r--1 r--a 

Fig. 6. Different configurations of 12 rectangles. 
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A P P E N D I X  A. FACTS A B O U T  D I M E N S I O N  T H E O R Y  

Def in i t ion.  Let U c R " .  The diameter of  U is defined as 
IUl=sup{Ix-y l :x ,y~U}.  If  {U~} is a countable collection of sets of  
diameter at most di that cover Z, i.e., Z c (dr U~ with 0 < I U~I ~< 3 for each 
i, we say that { U~} is a ~-cover of  Z. 

Suppose that Z c R n and s/> 0. For  any s > 0, define 

mH(S' Z)= lim inf {~  IU'ls: { Ui} is a ~5-c~ ~ Iv, I 

We call mH(S, Z) the s-dimensional Hausdorff measure of Z. There 
exists a unique critical value of  s at which mH(s, Z)jumps from ~ to 0. 
This critical value is called the Hausdorff dimension of Z and is written 
dimH(Z). If  s = d i m . ( Z ) ,  then mH(s, Z) may be 0, ~ ,  or finite. Hence 
dimH(Z) = sup{s: m.(s, Z ) =  ~ }  = inf{s: mu(s, Z)=0}. 

Def in i t ion.  Let N6(Z) denote the minimum of sets of diameter 
precisely 8 needed to cover the set Z. We define the upper and lower box 
dimension measures of  Z by 

N6(Z) 
dims  Z = lim i n f - -  

6 - 0  log(1/~) 

N6(Z) 
dims  Z = lim sup - -  

6~0 log(l/fi) 

If dims Z = dims Z, denote the common  value by dims Z. 

Remark. It is easy to see that dimH(Z),.<dima(Z)~< dims(Z).  The 
usual method of  obtaining an upper bound for dimH(Z) is to obtain an 
upper bound for dims(Z).  

The following proposit ion is extremely useful for obtaining a lower 
bound for the Hausdorff  dimension of  a set: 

Mass Distr ibut ion Principle (Frosteman). ~5~ Let/~ be a measure 
supported on Z and suppose that for some s there are numbers c > 0 and 
~ > 0  such that /~(U)<,clUI" for all sets U with If l ,<,~.  Then 
mH(s, Z) >~p(Z)/c and s ~< dimH(Z). 

The following simple lemma shows that in computing the box dimen- 
sion of  a set we need only consider the minimum number  N(6) of  covering 
boxes where ~ runs through a geometric sequence converging to zero. 

822/77/3-4-23 
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Lemma A1.(5) F i x O < c < l .  Then 

log N(t~) log N(c k) 
dim B Z = lira - klirn 

- o log(1/~) log(c k) 

APPENDIX B. CONDIT ION GE FOR REClPRICALS OF ROOTS 
O F 2  

We give some easy examples of  numbers 1 < fl ~< 2 that show the GE 
condition can sometimes be checked without resorting to the more com- 
plicated analysis on the projection of  the measure. 

1. In the special case where fl = 2, the GE condition is easy to check, 
since this is a question about  diadic expansions. 

2. I f f l = 2  ~/2 and n is even, then we can write 

n~l i r "/2-1i2r 1 ("/2-1i2r+l~ 
r=O -~- r=OE ~-~-~\r~O 2r'] 

1 
= A + ~ B  

For  this expression to lie in an interval [x, x + l/if'), we have at most 
2 "/2 choices for the value A and a bounded (one) number  of  choices for B. 
This suggests that we have a bound for the above expression of the general 
form 

as required for the GE condition. 
A similar argument works for any root of 2. 

APPENDIX C. CONDIT ION GE FOR SETS OF POSITIVE 
MEASURE 

In this appendix, we explain the relationship between the condition KS 
in ref. 11, p. 198, our condition GE, and the work of  Erdos. (4~ 

D e f i n i t i o n .  The number  fl satisfies condition KS if there exists 
a constant C > 0  such that the number  Np(n) of solutions to 
[P,(io ..... i,,-l)--P,,(io ..... j,,_~)[<~l/fl" satisfies Np(n)<~C(4fl)" (ref. l l ,  
p. 198). 
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KS. 
R e m a r k .  It is easy to see that  the condition G E  implies condition 

The usefulness of  this assumption is shown by the following results. 

Proposition C1. 1. A number  fl satisfies condition KS if and only 
if the Fourier  t ransform y(t)  = ~ e 2'rixr dfls(X ) of the measure/1~ is in L2(•), 

S ~c, where Ps  is the distribution of the r andom variable = Z , , = ~  e , f l "  (see 
Section 5) (ref. l l ,  pp. 197-198). 

2. For  each positive integer m~> 1 there exists 6 > 0  such that for 
almost  all f le  [ 1 - 6, 1 ) (in the sense of Lebesgue) we have y(t) = O( 1/Itl 0') 
as Jtl-4 +oo .  When m =  1 we have that ~ , e L 2 ( ~ )  (ref. 4, p. 186). 

We can conclude that  for almost  all values of  fl sufficiently close to 1 
the condition KS holds. We would like to reach the same conclusion for the 
stronger condition GE. We begin with the following lemma. 

Lemma C1. There exists 6 > 0  such that  for almost  all 
fl e [ 1 - 6, 1 ) the distribution p.,. is absolutely continuous with a uniformly 
bounded cont inuous density. 

Proof .  By part  2 of  Proposi t ion C1, we can choose 6 such that the 
Fourier  t ransform y(t)  is in L t (R)  for almost  all f iE [1  - 6 ,  1). Fix such a 
value of ft. 

It immediately follows from the Fourier  inversion formula and the 
Riemann-Lebesgue  lemma that  if the Fourier  t ransform y(t) of the 
distribution/~s is in L~(~),  then the distribution/2.,, is absolutely continuous 
with a uniformly bounded continuous density h defined by h ( x ) =  

e - 2'~ix'y( t ) dt. �9 

P r o p o s i t i o n  C2. There exists 6 > 0  such that  for almost  all 
fl ~ [ 1 - 3, 1 ) the condition G E  holds. 

Proof .  Choose 6 as in the previous lemma. It remains to show that 
the density h being uniformly bounded implies that  the condition G E  
holds. William Parry  showed us a derivation of this using an analysis of  fat 
baker 's  t ransformations in ref. 1. We shall present two additional proofs. 
The first p roof  is based on the study of transfer operators ,  which could be 
a useful new tool in the study of these number-theoret ic  problems. The 
second proof, which is considerably more  elementary,  was supplied to us 
by Yuval Peres. 

We first present a p roof  based on the transfer opera tor  

L h ( x )  = l [h(xf l )  + h( ( x  + 1 ) fl)] 
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defined on functions of bounded variation on 0~, as described in ref. 11, 
p. 200. 

The first observation is that for any such h we can expand 

L n h ( x ) =  E ~ h  ( Z irflr"[-xfln) 
�9 ,..., " _ ( io,..., in - I ) IO tn I 

and then observe the identity L"z to .~+g~(0)=  Np(n)/2". 
It is clear that the asymptotics of the function Np(n) are determined by 

the spectral properties of the operator  L on the space of functions of 
bounded variation. 

1. The operator  has a maximal eigenvalue equal to unity, with an 
eigenprojection corresponding to the measure Ps, i.e., L"k --* ~ k dps. 

2. The remainder of the spectrum is contained within the disc about  
zero of radius ft. By ref. 17 there can be only isolated eigenvalues ct of 
modulus greater than ft. However,  since the operator  also preserves the 
space of C ~ functions, the associated eigenfunctions Lk = ~k must be C ~. 
By differentiating, we see that (Lk)' =flL(k')=odd, and thus ~/fl is also an 
eigenvalue, except where ~ = 1 and k is the constant function. However,  
since the spectral radius of L is unity, we require that [ot[/fl<~ 1, which 
completes the proof. 

Therefore, we can write L " k = ~ k d p s +  UC"~k, where U ("~ is a linear 
operator  with lim sup.  _ + o~ l[ U(')[I ~/" ~< ft. 

We can write 

p n  
f l s ( [ a , a + f l " ] ) + U ( " )  L Zta. a+p.~(0) = Xt~.~+p"3(0) = U2(_) 

If we observe that the norms of ZE~,~+~'~ are uniformly bounded (in the 
space of functions of bounded variation), we see that U(')Zta. a+p , l (0 )=  
O((f l ' ) ' )  for any fl' >ft .  It only remains to use the fact that the density h 
is uniformly bounded to see that lim s u p , _  + ~ { p [  a, a + fl"] )/fl'} is finite. 
This completes the first proof. �9 

The second proof  is a proof  by contradiction. If fl is not GE, then 
there exist increasing sequences of integers n; and Ca and intervals J, ,  such 
that 2(,/,,,)= fl"' and 

f ni-- 1 } 
Card (io ..... i.,_z): ~ i, f f s J . ,  >~C,(2/~) "' 

r = O  
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Since ~.k~ we may symmetrically enlarge the intervals 
J,,, to intervals I,,, ~ J,,,, 2(/,,) = fl"'+ f l" / (1  - fl) = lfl"', such that if 
Z, , , -1  i r f l re j , , , ,  then Y~r~0 i r f l ' e I , , "  We obtain that r = 0  

{ +" t Card (io ..... i ........ i.,,+e): ~ i r f l reI , , ,  >~2PC'(2fl) "i 
r = 0  

This implies that 

p s ( I . , )  limp_ [(Card{(io ..... i,,, ..... i . ,+p): v-,+p irff  E I.,} )/2 " + ' ]  - -  o~  Z . ,d r  = 0 

2(/.) 2(/.,) 
C.R" C; >~ t----C-r __ 

1#" I 

which is unbounded as i ~  oo. It follows that the Radon-Nikodyn 
derivative @ s / d 2  is not uniformly bounded. �9 

We conjecture that (Lebesgue) almost all numbers �89  1 satisfy 
condition GE. By Proposition 5, part 2, this conjecture would imply that 
for almost all �89 < 22 < 1, the Hausdorff dimension of the limit set of the 
model similarity process coincides with the box dimension and is given by 
the formula in Proposition 5, part 1. Moreover, by Proposition 5, part 1, 
this conjecture would imply that for almost all 0 < 22 < I, the Hausdorff 
dimension coincides with the box dimension. 
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